作文网 > 实用文档 > 教学教案 > 详情页

八年级学生数学教案

作者:蓝哲羽2023-08-17 16:47:01

导读:八年级学生数学教案 (篇1) 《正弦和余弦(二)》 一、素质教育目标 (一)知识教学点 使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。 (二)能力训练点 逐步培养... 如果觉得还不错,就继续查看以下内容吧!

此文《八年级学生数学教案(通用6篇)》由作文录「Zwlu.Com」小编推荐,供大家学习参考!

  八年级学生数学教案 (篇1)

  《正弦和余弦(二)》

  一、素质教育目标

  (一)知识教学点

  使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。

  (二)能力训练点

  逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。

  (三)德育渗透点

  培养学生独立思考、勇于创新的精神。

  二、教学重点、难点

  1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。

  2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。

  三、教学步骤

  (一)明确目标

  1.复习提问

  (1)什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.

  (2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).

  (3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。

  2.导入新课

  根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题。

  (二)整体感知

  关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。

  (三)重点、难点的学习和目标完成过程

  1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。

  2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神。

  3.教师板书:

  任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

  sinA=cos(90°-A),cosA=sin(90°-A)。

  4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固。

  已知∠A和∠B都是锐角,

  (1)把cos(90°-A)写成∠A的正弦。

  (2)把sin(90°-A)写成∠A的余弦。

  这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3。

  学生独立完成练习2,就说明定理的教学较成功,学生基本会运用。

  教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备。

  (四)小结与扩展

  1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分。

  2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值。

  八年级学生数学教案 (篇2)

  一、学生起点分析

  学生的知识技能基础:经过本章的学习,学生已掌握了一定的数据处理的方法,会用笔或计算器求一组数据的平均数、中位数和众数,能利用它们解决一些实际问题,并能初步选择恰当的数据代表对数据作出自己的评判。

  学生活动经验 基础:学生在本 章的学习活动中,解决了一些相关的实际问题,获得了从事统计活动所必须的数学方法,形成了动手实践、自主探索、合作交流的学习方式,积累了一些数学探究活动的经验。

  二、学习任务分析

  本节课的学习任务是:整理归纳本章所学的知识,形成知识网络结构;会用计算器准确地求出一组数据的平均数、中位数和众数,能选择恰当的数据代表对数据作出评判;培养综合运用统计知识解决实际问题的能力,达成有关的情感态度目标。为此,本节课 的教学目标是:

  1. 知识与技能:会用计算器准确地求出一组数据的平均数、中位数和众数。了解平均数、中位数和众数的差别,能选择恰当的数据代表对数据作出评判,并解决实际问题。

  2. 过程与方法:初步经历调查、统计、分析、研讨等活动过程,在活动发展学生综合运用统计知识解决实际问题的能力。

  3. 情感与态度:通过本章内容的回顾与思考,培养学生整理归纳知识的方法,逐步养成勤于思考、善于总结的好习惯。

  三、教学过程设计

  本节课设计了五个教学环节:第一环节:归纳知识结构;第二环节:回顾重点内容;第三环节:综合运用提高;第四环节:课堂小结;第五环节:布置作业。

  第一环节:归纳知识结构

  内容:本章内容已全部学完,请大家回忆一下,这一章学了哪些内容?这些内容之间有什么联系呢?

  留出时间让学生思考、交流、梳理知识,然后师生共同归纳总结出如下知识网络结构图:

  目的:引导学生将所学的知识整理归纳,总结出网络结构图,形成知识系统。帮助学生掌握正确的学习方法,养成良好的学习习惯。

  注意事项:以上知识的归纳总结要以学生为主体来完成,教师不要包办代替。

  第二环节:回顾重点内容[

  内容:引导学生根据网络结构图,把重点知识内容再回顾一下:

  1. 平均数、中位数、众数的概念及举例

  一般地,对于n个数x1,x2,…,xn,我们把 (x1+x2+…+xn),叫做这n个数的算术平均数,简称平均数。新$课$标$第$一$网

  一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两

  个数据的平均数)叫做这组数据的中位数。

  一组数据中出现次数最多的那个数据叫做这组数据的众数。

  2. 平均数、中位数、众数的特征

  (1)平均数、中位数、众数都是表示一组数据“平均水平”的特征数。

  (2)平均数能充分利用数据提供 的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

  (3)中位数的计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。当一组数据中个别数据变动较大时,可选择中位数来表示这组数据的“集中趋势”。

  (4)众数的可靠性较差,它不受极端数据的影响,求法简便。当一组数据中某些数据多次重复出现时,众数是我们关心的一种统计量。

  3. 算术平均数和加权平均数的联系与区别及举例

  算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

  4. 加权平均数中权的差异对平均数的影响及举例

  在实际问题中,一组数据里的各个数据的权未必相同,权的差异对平均数的影响较大。加权平均数中,由于权的不同,会导致结果的差异。

  5. 利用计算器求一组数据的平均数

  目的:帮助学生进一步掌握本章的重点知识内容,并会结合实例说明,从而夯实“双基”。

  注意事项:在重点知识的回顾中,应注重理论联系实际,重视学生的举例,关注学生所举例子的合理性、科学性和创造性等,并据此评价学生对知识的理解水平和学习的情感态度,使他们具有:一双能用数学视角观察世界的眼睛; 一个能用数学思维思考世界的头脑。

  第三环节:综合运用提高

  内容:1. 从一批零件毛坯中抽取10件,称得它们的质量如下(单位:克):

  400.0 400.3 401.2 398.9 399.8

  399.8 400.0 400.5 399.7 399.8

  利用计算器求出这10个零件的平均质量。

  2. 某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

  3. 某公司销售部有营销人员15人,销售部为了制定某种商品的月 销售量,统计了这15人某月的销售量如下:

  每人销售件数 1800 510 250 210 150w 120

  人 数 1 1 3 5 3 2[

  (1)求这15位营销人员该月销售量的平均数、中位数和众数;

  (2)假设销售部负责人把每位营销员的月销售量定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售量,并说明理由。

  4.下图反映了甲、乙两班学生的体育成绩。

  (1)不用计算,根据条形统计图,你能判断哪个班级学生的体育成绩好一些吗?

  (2)你能从图中观察出各班学生体育成绩等级的“众数”吗?

  (3)如果依次将不及格、及格、中、良好、优秀记为55分、65分、75分、85分、95分,分别估计一下,甲、乙两班学生体育成绩的平均值大致是多少?算一算看你的估计结果怎么样?

  (4)甲班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的道理吗?你还能写出几组数据也适合这一规律吗?

  目的:以上四道题目呈阶梯状,由浅入深,由单一到综合。第1、2题分别考查学生对算术平均数、加权平均数和计算器的掌握情况;第3题通过表格信息,让学生计算 平均数、中位数和众数,体会这三者在具体情境中的意义和区别,并能根据数据信息作出评判和决策;第4题综合了课本复习题的最后两题,旨在巩固学生对统计图信息的识别和判断能力,运用数据的代表—平均数和众数说明实际问题,初步体会平均数、中位数和众数三者的“对称”关系,提高学生的估计能力和综合运用知识解决实际问题的能力,培养创新意识。

  注意事项:依据题目的层次,第1、2题和第3题的(1)问可让学生先独立笔答完成后,教师再讲评;第3题的(2)问和第4题具有开放性,特 别是第4题内涵丰富,要让学生展开思维,充分讨论,在合作交流中共同提高,教师对此要作出及时的评价。

  对本章知识技能的 评价,应当更多地关注数据的代表在不同的实际问题情境中的意义和应用,而不要过于关注其具体运算的熟练程度。

  第四环节:课堂小结

  内容:1. 本章知识结构和重点内容。

  2. 综合运用统计知识解决实际问题。

  3. 整理归纳知识的方法,勤于思考、善于总结的好习惯。

  目的:围绕本节课的教学目标,进行知识、方法、能力 、习惯全方位的小结,目的是为了学生的全面发展。

  注意事项:课堂小结可由教师提纲挈领、画龙点睛式地完成。

  第五环节:布置作业

  1. 课本本章复习题。

  2. 在数学成长本上进行本章的小结与反思。

  四、教学反思

  1. 华罗庚教授说:读书要从薄到厚,又从厚到薄。复习重在从厚到薄。每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用树图、表格、习题组等技术措施复习是有效的,本节课在这方面做了一些尝试。

  2. 一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另一方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率。

  3. 复习课 不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的。

  八年级学生数学教案 (篇3)

  一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

  教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

  据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

  二、教学重点:勾股定理的证明和应用。

  三、 教学难点:勾股定理的证明。

  四、教法和学法: 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

  切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

  通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

  五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

  (一)创设情境 以古引新

  1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

  2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

  3、板书课题,出示学习目标。(二)初步感知 理解教材

  教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

  (三)质疑解难 讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?

  (3)如何运用勾股定理?是否还有其他形式?

  这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

  (四)巩固练习 强化提高

  1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

  2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

  (五)归纳总结 练习反馈

  引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

  本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

  八年级学生数学教案 (篇4)

  《梯形》教案

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的.分类:(投影)

  (二)等腰梯形性质的探究

  八年级学生数学教案 (篇5)

  《因式分解》教案

  教学目标:

  1、理解运用平方差公式分解因式的方法。

  2、掌握提公因式法和平方差公式分解因式的综合运用。

  3、进一步培养学生综合、分析数学问题的能力。

  教学重点:

  运用平方差公式分解因式。

  教学难点:

  高次指数的转化,提公因式法,平方差公式的灵活运用。

  教学案例:

  我们数学组的观课议课主题:

  1、关注学生的合作交流

  2、如何使学困生能积极参与课堂交流。

  在精心备课过程中,我设计了这样的自学提示:

  1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?

  2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?

  ①-x2+y2②-x2-y2③4-9x2

  ④(x+y)2-(x-y)2⑤a4-b4

  3、试总结运用平方差公式因式分解的条件是什么?

  4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?

  5、试总结因式分解的步骤是什么?

  师巡回指导,生自主探究后交流合作。

  生交流热情很高,但把全部问题分析完已用了30分钟。

  生展示自学成果。

  生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)

  生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)

  师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

  生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)

  生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。

  生5:a4-b4可分解为(a2+b2)(a2-b2)

  生6:不对,a2-b2还能继续分解为a+b)(a-b)

  师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……

  反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的'条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:

  (1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:

  下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。

  (2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。

  我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。

  确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……

  八年级学生数学教案 (篇6)

  一、业务学习

  加强学习,提高思想认识,树立新的理念.坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的《课程标准》,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力,以全新的素质结构接受新一轮课程改革浪潮的“洗礼”。另外,抽时间学习,并作学习笔记,以丰富自己的头脑,提高业务水平。

  二、教学方面

  教学工作是学校各项工作的中心,一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了明显效果,具体表现在:

  1、备课深入细致。平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。

  2、注重课堂教学效果。针对初一年级学生特点,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。注意和学生一起探索各种题型,我发现学生都有探求未知的特点,只要勾起他们的求知欲与兴趣,学习劲头就上来了,如每节课后如有时间,我都出几题有新意,又不难的相关题型,与学生一起研究。

  3、要进行一定数量的练习,相当数量的练习是必要的,练习时要有目的,抓基础与重难点,渗透数学思维,在练习时注重学生数学思维的形成与锻炼,有了一定的思维能力与打好基础,可以做到用一把钥匙开多道门。

  4、考前复习中要认真研究与整理出考试要考的知识点,重难点,要重点复习的题目类型,难度,深度。这样复习时才有的放矢,复习中什么要多抓多练,什么可暂时忽略,这一点很重要,会直接影响复习效果与成绩。另外还要抓好后进生工作,后进生会影响全班成绩与平均分,所以要花力气使大部分有希望的后进生跟得上。例如在课堂上,多到他们身边站一站,多问一句:会不会,懂不懂,课后,对他们的不足及时帮助,使他们感受到老师的关心,从而能够主动学习。

  5、坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。向经验丰富的教师请教并经常在一起讨论教学问题。听公开课多次,学习他人的先进教学方法。

  6、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。

  三、工作中存在的问题

  1、教材挖掘不深入。

  2、教法不够灵活,不能总是吸引学生学习,对学生的引导、启发不足。

  3、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导.

  4、后进生的辅导不够,由于对学生的基础知识掌握情况了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中也知道,有的学生只是做表面文章,“出工不出力”

  5、教学反思不够。

  四、今后努力的方向

  1、加强学习,学习新课标下新的教学思想。

  2、学习新课标,挖掘教材,进一步把握知识点和考点。

  3、多听课,学习同科目教师先进的教学方法和教学理念。

  4、加强转差培优力度。

  5、加强教学反思,加大教学投入。

  12.3.1.1等腰三角形(一)

  教学目标

  1.等腰三角形的概念。2.等腰三角形的性质。3.等腰三角形的概念及性质的应用。

  教学重点:1.等腰三角形的概念及性质。2.等腰三角形性质的应用。

  教学难点:等腰三角形三线合一的性质的理解及其应用。

  教学过程

  Ⅰ.提出问题,创设情境

  在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

  有的三角形是轴对称图形,有的三角形不是。

  问题:那什么样的三角形是轴对称图形?

  满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

  我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

  Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形。

  作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

  等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

  思考:

  1.等腰三角形是轴对称图形吗?请找出它的对称轴。

  2.等腰三角形的两底角有什么关系?

  3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

  结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

  要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

  沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

  由此可以得到等腰三角形的性质:

  1.等腰三角形的两个底角相等。(简写成“等边对等角”)

  2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合。(通常称作“三线合一”)

  由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程。

  如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

  所以△BAD≌△CAD(SSS).

  所以∠B=∠C.

  ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以△BAD≌△CAD.

  所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

  [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

  求:△ABC各角的度数.

  分析:根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

  再由三角形内角和为180°,就可求出△ABC的三个内角.

  把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

  解:因为AB=AC,BD=BC=AD,

  所以∠ABC=∠C=∠BDC.

  ∠A=∠ABD(等边对等角).

  设∠A=x,则∠BDC=∠A+∠ABD=2x,

  从而∠ABC=∠C=∠BDC=2x.

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

  [师]下面我们通过练习来巩固这节课所学的知识.

  Ⅲ.随堂练习:1.课本P51练习1、2、3。2.阅读课本P49~P51,然后小结。

  Ⅳ.课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。

  Ⅴ.作业:课本P56习题12.3第1、2、3、4题。

  板书设计

  12.3.1.1等腰三角形

  一、设计方案作出一个等腰三角形

  二、等腰三角形性质:1.等边对等角2.三线合一

  12.3.1.1等腰三角形(二)

  教学目标

  1.理解并掌握等腰三角形的判定定理及推论

  2.能利用其性质与判定证明线段或角的相等关系.

  教学重点:等腰三角形的判定定理及推论的运用

  教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.

  教学过程:

  一、复习等腰三角形的性质

  二、新授:

  I、提出问题,创设情境

  出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.

  学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.

  II、引入新课

  1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?

  作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

  2.引导学生根据图形,写出已知、求证.

  3.小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”。(板书定理名称).

  强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。

  4.引导学生说出引例中地质专家的测量方法的根据。

  III、例题与练习

  1.如图2

  其中△ABC是等腰三角形的是[]

  2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).

  ②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).

  ③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

  ④若已知AD=4cm,则BC______cm.

  3.以问题形式引出推论l______.

  4.以问题形式引出推论2______.

  例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

  分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

  练习:5.(1)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

  (2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

  练习:P53练习1、2、3。

  IV、课堂小结

  1.判定一个三角形是等腰三角形有几种方法?

  2.判定一个三角形是等边三角形有几种方法?

  3.等腰三角形的性质定理与判定定理有何关系?

  4.现在证明线段相等问题,一般应从几方面考虑?

  V、布置作业:P56页习题12.3第5、6题

结尾:非常感谢大家阅读《八年级学生数学教案(通用6篇)》,更多精彩内容等着大家,欢迎持续关注作文录「Zwlu.Com」,一起成长!

编辑特别推荐:八年级学生数学教案八年级数学教案模板2023初二学生数学教案2023初二数学教案大全初二数学优秀教案, 欢迎阅读,共同成长!

相关推荐
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright © 2020-2023 作文录 版权所有
鲁ICP备15004243号-7